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ARTICLE

TransferTWAS: A transfer learning framework
for cross-tissue transcriptome-wide association study
Daoyuan Lai,1 Han Wang,2 Tian Gu,3 Siqi Wu,1 Dajiang J. Liu,4 Pak Chung Sham,5,6
and Yan Dora Zhang1,*

Summary

Transcriptome-wide association studies (TWASs) utilize gene-expression data to explore the genetic basis of complex traits. A key chal-
lenge in TWASs is developing robust imputation models for tissues with limited sample sizes. This paper introduces transfer learning-
assisted TWAS (TransferTWAS), a framework that adaptively transfers information from multiple tissues to improve gene-expression
prediction in the target tissue. TransferTWAS employs a data-driven strategy that assigns higher weights to genetically similar external
tissues. It outperforms other multi-tissue TWASmethods, such as the Unified Test for Molecular Signatures (UTMOST), which neglects
tissue similarity, and Joint-Tissue Imputation (JTI), which relies on functional annotations to represent tissue similarity. Simulation
studies demonstrate that TransferTWAS achieves the highest imputation accuracy, and analyses using the ROS/MAP and
GEUVADIS datasets show a substantial power gain while maintaining control over type-I errors. Furthermore, analysis of the low-den-
sity lipoprotein cholesterol GWAS dataset and other complex traits demonstrates that TransferTWAS effectively identifies more asso-
ciations compared with existing methods.

Introduction

Genome-wide association studies (GWASs) have identi-
fied numerous single-nucleotide polymorphisms (SNPs)
associated with complex diseases; however, they face sig-
nificant challenges in pinpointing causal genes, particu-
larly for SNPs in non-coding regions.1,2 To address these
limitations, transcriptome-wide association studies
(TWASs) have emerged as a powerful approach, focusing
on the association between predicted levels of genetically
regulated gene expression (GReX) and phenotypes of
interest.3,4 TWAS leverages gene-expression reference
panels, such as the Genotype-Tissue Expression (GTEx)
project,5–8 to explore the relationship between genotype
and phenotype.9 Central to TWAS is the hypothesis that
SNPs influence complex traits through expression quanti-
tative trait loci (eQTLs). A TWAS involves two key steps:
imputing tissue-specific GReX using transcriptomic and
genetic data from reference panels and conducting associ-
ation analyses between GReX and the phenotypes.
TWAS methods can be broadly categorized into single-

tissue and multi-tissue approaches. Singe-tissue methods,
which focus on gene expression in biologically relevant
tissues, face several limitations. These include an inability
to fully utilize the multi-tissue nature of gene-expression
reference panels such as GTEx, disregard for cross-tissue
transcriptional regulatory similarities, and poor perfor-
mance in tissues with limited sample sizes.10–12 In
response, multi-tissue methods have been developed to

leverage information across multiple tissues, aiming to
improve performance in tissues with small effective sam-
ple sizes by incorporating data from larger, external
tissues.10–13

Themulti-tissue method, MultiXcan, regresses the com-
plex phenotype of interest onto the principal components
of the GReX from all available tissues.14 However,
MultiXcan does not enhance the quality ofGReX in indi-
vidual tissues, and the interpretability of its principal
components is limited. Another approach, the Unified
Test for Molecular Signatures (UTMOST), jointly models
genotype and cross-tissue gene-expression data but fails
to account for cross-tissue similarity.10,11 To address this
limitation, Zhou et al.11 proposed the joint-tissue imputa-
tion (JTI) method, which leverages shared genetic regula-
tion of gene expression across tissues and incorporates
external annotations, such as tissue-level expression cor-
relations and gene-level DNase I hypersensitive site simi-
larity. While JTI improves prediction performance, its
effectiveness depends on the quality and availability of
the functional annotations.
Toovercomethesechallenges,weproposeTransferTWAS,

amulti-tissue TWASmethod that employs transfer learning
to enhanceGReX imputation. Unlike traditional methods,
TransferTWAS does not depend on functional annotations;
instead, it automatically prioritizes tissues with expression
patterns similar to the target tissue, minimizing the impact
of dissimilar tissues. Our extensive simulations show
that TransferTWAS significantly enhances gene-expression
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imputation accuracy compared to existing multi-tissue
methods, resulting in greater TWAS power while maintain-
ing control over type-I error rates. When applied to a quan-
tile-transformed low-density lipoprotein cholesterol (LDL-
C; MIM: 605028) GWAS dataset, TransferTWAS effectively
identifies well-known causal genes, including the SORT1
(MIM: 602458)-PSRC1 (MIM: 613126)-CELSR2 (MIM:
604265) cluster, KPNB1 (MIM: 602738), and LIPC (MIM:
151670). Additionally, when tested on 30 other complex
traits, TransferTWASuncovers thehighest number of signif-
icant associations, highlighting its wide-ranging applica-
bility and effectiveness in genetic research.

Material and methods

TWAS framework
The first step of TWAS involves estimating cis-eQTL effect sizes us-
ing a gene-expression reference panel, which includes both gene-
expression and genotype data. For tissue k (k ∈ {1;…;K});the rela-
tionship between gene expression and genotype is modeled as a
multiple linear regression:

E(k) = G
(k)β(k) + ϵ(k); (Equation 1)

where E(k) ∈ ℝnk is a vector of gene expression for nk individ-
uals in tissue k;G(k) ∈ ℝnk×M is the genotype matrix of the M

cis-SNPs (within 1 MB of the gene’s flanking regions),
β(k) =

(
β(k)

1 ;…; β(k)

M

)⊤
is the M vector of the eQTL effect sizes,

and ϵ(k) ∈ ℝnk denotes the residual error term. Gene expression
E(k) is adjusted for non-genetic covariates and centered such
that 𝔼(E(k)) = 0. The genotype matrix G(k) is centered but not
standardized. After estimating β̂(k) for k ∈ {1;…; K}, the GReX

for a GWAS dataset with genotype matrix G is imputed as

GR̂eX = G β̂(k):

Overview of TransferTWAS
We provide a visualization of the workflow of TransferTWAS in
Figure 1. For simplicity, we first assume that we are working on

a gene that only has expression in two tissues. To calculate the
cis-eQTL effect size in tissue k; TransferTWAS optimizes the
following loss function to enhance GReX imputation:

β̂(k) = argmin
β(k)

1

nk

⃦
⃦E(k) − G

(k)β(k)
⃦
⃦2

2
+ λ

⃦
⃦β(k)

⃦
⃦2

2⏟̅̅̅̅ ⏞⏞̅̅̅̅ ⏟
Ridge penalty

− 2η
(

β̂(− k)
)⊤

β(k)

⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟
Angle-based penalty

; k = 1;…;K

: (Equation 2)

Here, λ; η ∈ ℝ are tuning parameters controlling the ridge and the
angle-based penalties, respectively. Since we only have two tis-
sues (one target and one external), β̂(− k) ∈ ℝM is the estimated
eQTL effect size from that external tissue. The angle-based pen-
alty, motivated by Gu et al.,15 encourages alignment between
β(k) and informative external effect directions.
Now we turn to the scenario that multiple (larger than one)

external tissues are available. In this case, β̂(− k) is adaptively
aggregated across external tissues using algorithm 1, which as-
signs higher weights to tissues with stronger predictive utility.
This ensures that only relevant tissues contribute to the model,
reducing noise from uninformative sources. Readers may refer
to Note S1 for a detailed explanation of the details and the logic
of algorithm 1.

Solving the loss function
Equation 2 has a closed-form solution given by

β̂(k) =
(
G(k)⊤G(k) + nkλI

)− 1(
G(k)⊤E(k) + nkηβ̂(− k)

)
: (Equation 3)

However, calculating the inverse of G(k)⊤G(k) becomes compu-
tationally expensive for large M. To address this, we derive an
alternative formulation of Equation 3,

β̂(k) = V t Σ1U
⊤
t E(k) + nkη

(

V t Σ2V
⊤
t +

(
I − V tV

⊤
t

)

nkλ

)

β̂(− k) :

(Equation 4)

In this formulation, the matrices U t and V t consist of the first t

columns of the matrices U and V, which are obtained through
the singular value decomposition (SVD) of G(k). We define

Figure 1. The schematic workflow of
TransferTWAS
Suppose the target tissue is tissue k. The
first step is to take standard ridge regres-
sion to train the expression predictive
models in other available tissues and
obtain the imputation weights β̂(j) for
j ∕= k. Next, we take the algorithm 1 to
aggregate β̂(j)’s information into β̂(− k).
The third step uses β̂(− k), tissue k’s gene
expression E(k), and genotype data G(k)

as inputs to calculate the final estimator.
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Σ1 : = diag

(
d1

d2
1 + nkλ

;…;
dt

d2
t + nkλ

)

;

Σ2 : = diag

(
1

d2
1 + nkλ

;…;
1

d2
t + nkλ

)

;

where (d1;…; dt ) are the first t singular values of G(k), and I is an
identity matrix of size M × M: Throughout this paper, we set t =

min(nk;M).
Equation 4 offers two key advantages: it avoids the computa-

tionally expensive matrix inversion, making it scalable for large
M, and it significantly reduces computational time by using the
economic SVD instead of the full SVD. A detailed derivation of
Equation 4 can be found in Note S2.

Choice of tuning parameters
The selection of the optimal tuning parameters (λ; η) is a critical
step in the implementation of TransferTWAS. The tuning process
starts with λ. We first perform standard ridge regression using the
R function cv:glmnet() with alpha = 0 and nfold = 5. This func-
tion generates a sequence of λ values, from which we select five
equally spaced candidates within the range (λmin;λmax).
Next, candidate values for η are generated based on the selected

λ candidates. As suggested by Gu et al.,15 the theoretical optimal
ηopt is related to λopt through the following equation:

ηopt = λopt ρ
αk

α− k

: (Equation 5)

Here, ρ is the Pearson correlation between β̂(k) and β̂(− k). The two

terms αk := 𝔼(

⃦
⃦
⃦β̂(k)

⃦
⃦
⃦

2

2
) and α− k := 𝔼(

⃦
⃦
⃦β̂(− k)

⃦
⃦
⃦

2

2
)measure the signal

strength of the target and external datasets, respectively. Using
Equation 5, five η candidates are generated from the λ candidates.
Finally, the best combination of λ and η is determined through
cross-validation (CV), ensuring optimal performance of the
model.

GTEx, GEUVADIS, and ROS/MAP data preprocessing
The preprocessing of the GTEx data follows Zhou et al.,11 Wang
et al.,16 and Hu et al..10 Gene-expression imputation models
were trained using genotype and normalized gene-expression
data from 48 GTEx tissues. SNPs with ambiguous alleles, minor
allele frequency (MAF) less than 0.05, or Hardy-Weinberg equilib-
rium (HWE) p values less than 0.05 were excluded. The gene-
expression data were adjusted for potential confounding effects,
including sex, sequencing platform, the top three principal com-
ponents of genotype data, and the top probabilistic estimation of
expression residuals (PEER) factors. The number of PEER factors
included in the adjustment was determined by tissue sample
size: 15 ( < 150 samples), 30 (150–250 samples), and 35 (> 250

samples). Covariates were sourced from the GTEx portal, and bial-
lelic SNPs within a 1-MB region of the target gene were selected as
features.
TransferTWAS predictive performance was evaluated using two

distinct gene-expression reference panels: Religious Orders Study
and Rush Memory Aging Project (ROS/MAP) with brain (prefron-
tal cortex) tissue,17 and Genetic European variation in disease
(GEUVADIS) with lymphoblastoid cell lines.18 These datasets
enable a comprehensive assessment of TransferTWAS. Their pre-
processing follows protocols fromWang et al.19 and Keys et al.,20

with detailed methods provided in Note S3.

Simulation study I: Gene-expression imputation
accuracy
Simulation study I evaluates the accuracy of gene-expression
imputation for UTMOST, JTI, and TransferTWAS. The design fol-
lowed Khunsriraksakul et al.,21 Feng et al.,22 and Nagpal et al.23

Wemeasured imputation accuracy using the squared Pearson cor-
relation (i.e., r2) between the observed and predicted gene-expres-
sion levels. We focused on the gene CPTP (MIM: 615467), which
has expression across all GTEx tissues, and examined three types
of tissues: causal tissue, where genetic variants directly affect
expression levels; genetically correlated tissues, which influence
expression in the target tissue to a lesser extent; and genetically
uncorrelated tissues with no genetic relationship to the causal tis-
sue. In the simulations, the brain (prefrontal cortex) was desig-
nated as the causal tissue.
Simulation of gene expression in causal tissue
The gene expression in the causal tissue, E, was simulated using
the formula

E = Gβ + ϵ: (Equation 6)

Here, G ∈ ℝn×M is the normalized genotype matrix for n = 130

GTEx individuals with CPTP expression data in the target tissue,
where the matrix has a mean of 0 and a variance of 1. The vector
β = (β1;…; βM)

⊤ contains the eQTL effect sizes with M = 2;212.
We randomly selected pcausal = 5% SNPs as causal SNPs. The set
of non-zero coefficients (i.e., the causal SNPs) in β is denoted by
S = {j : wj∕= 0}. For the SNPs in S, we generated effect sizes βj

(where j ∈ S) from a standard normal distribution N(0;1), while
the effect sizes for the remaining non-causal SNPs were set to 0.
We then rescaled the effect sizes β to ensure that the gene-expres-
sion heritability (i.e., the proportion of gene-expression variance
explained by SNPs) is h2

e . The residual error ϵ follows a normal dis-
tribution N(0; (1 − h2

e )I).
Simulation of gene expression in correlated tissues
The gene expressions inNcorr randomly selected correlated tissues
were simulated next. We assumed a uniform genetic correlation ρ
between the causal tissue and each correlated tissue. The effect
sizes for the k-th correlated tissue were denoted as β(k) and simu-
lated as follows:

β(k)

j ∼N
(

ρβj;
(
1 − ρ2

)
×h2

e

)
; k = 1;…;Ncorr; j ∈ Sk:

Here, β(k)

j
represents the j-th coordinate of β(k), and Sk is the active

set of β(k). We assumed that Sk is a random subset of S, with |Sk| =

qk|S|. The percentage qk represents proportion of the shared causal
SNPs between the causal tissue and tissue k in GTEx, with specific
values provided in Khunsriraksakul et al..21 The residual gene-
expression values in correlated tissues were simulated as

ϵ(k) ∼ N

(

0;diag
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − h
2

e

√ )

×Σ×diag
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − h
2

e

√ ))

;

where Σ represents the residual correlation among the gene-
expression levels across tissues. Following Khunsriraksakul
et al.,21 we set Σ = I. The gene-expression levels in the k-th corre-
lated tissues, E(k), were then simulated as

E(k) = G(k)β(k) + ϵ(k); (Equation 7)

where G(k) ∈ ℝnk×M is the genotype matrix of the nk GTEx indi-
viduals that have gene expression in the k-th tissue.
Simulation of gene expression in uncorrelated tissues
Gene-expression data (E(l);G(l)) in the l-th uncorrelated tissues
were simulated using a similar model as in Equation 6, but with
ρ = 0.
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Simulations were repeated 1,000 times for each of the six pairs
of (ρ;Ncorr;pcausal), i.e., (0:3;0;5%);(0:3;24;5%);(0:3;47;5%);(0:8;0;

5%); (0:8;24;5%), and (0:8;47;5%). Results were presented as av-
erages across 1,000 replicates for each (ρ;Ncorr; pcausal) combina-
tion. The proportion of causal SNPs, pcausal, also varied among
values in vector pcausal = (0:1%;2%;5%;10%).

Simulation study II: TWAS power analysis
Simulation study II compares the performance of UTMOST, JTI,
and TransferTWAS in terms of TWAS power, following the design
outlined by Zhou et al..11We assumed P causal genes for the brain
(prefrontal cortex) based on the ROS/MAP panel, and the true
expression Eg;true for each causal gene g = 1;2;…;P was simu-
lated from a standard normal distribution N(0;I). The phenotype
Y was genetically determined by these P causal genes and gener-
ated using the equation

Y =
∑P

g =1

αgEg;true + ϵ : (Equation 8)

In this equation, the coefficients αg were drawn from N
(

0;h2
p=P
)
;

while the residual ϵ followed N(0; (1 − h2
p)I). The term h2

p repre-

sents phenotypic heritability, which is the proportion of pheno-
typic variance explained by gene-expression levels. Equation 8 in-
dicates the overall phenotypic variance explained by gene
expression is h2

p , and each causal gene contributes, on average,

𝔼(αi) = h2
p=P to this variance.

We constructed predicted gene expressions, denoted as

GR̂eXUTMOST; GR̂eXJTI, and GR̂eXTransferTWAS. To achieve this,
we utilized eQTL effect sizes estimated from UTMOST, JTI, and
TransferTWAS, which were derived from GTEx data. These effect
sizes were applied to predict gene expression in the ROS/MAP da-
taset. Next, we calculated the empirical correlations for the three
methods: rUTMOST; rJTI; and rTransferTWAS. These correlations repre-
sent the Pearson correlation between observed and predicted
gene expressions based on each method’s performance in ROS/
MAP. An empirical correlation matrix Φ was constructed as
follows:

Φ =

⎛

⎜
⎜
⎝

1 rUTMOST rJTI rTransferTWAS

rUTMOST 1 0 0

rJTI 0 1 0

rTransferTWAS 0 0 1

⎞

⎟
⎟
⎠:

The predicted gene expressions GR̂eXUTMOST;GR̂eXJTI;

GR̂eXTransferTWAS were determined using the following formula:

(
Eg;true;GR̂eXUTMOST;GR̂eXJTI;GR̂eXTransferTWAS

)
=

(
Eg;true;Z1;Z2;Z3

)
× cholesky(Φ)× SD

(
Eg;true

)

+mean
(
Eg;true

)
;

where Z1;Z2; and Z3 were independently simulated from a stan-
dard normal distribution N(0; I): The goal is to achieve specified
correlations rUTMOST; rJTI, and rTransferTWAS between Eg;true and the
respective predicted gene expressions, mimicking the behavior
of the prediction models under study. The predicted gene expres-
sions were generated independently while ensuring they corre-
late with the true expression Eg;true.
Subsequently, 1,000 simulations were performed to test the as-

sociation between the predicted gene expression GR̂eXUTMOST;

GR̂eXJTI;GR̂eXTransferTWAS, and the phenotype Y . The TWAS po-
wer was estimated as the proportion of simulations achieving sta-

tistical significance (pBonferroni < 0:05). To explore different sce-
narios, we varied the expression heritability h2

p across the values
(0:05;0:1;0:2;0:3) and the number of causal genes P among
(40;50;60;70): Additionally, we varied the causal tissues by using
the GEUVADIS dataset as the reference panel and selected
Epstein-Barr virus (EBV) transformed lymphocytes as the causal
tissue to construct Φ and simulate GR̂eXUTMOST; GR̂eXJTI;

GR̂eXTransferTWAS, and Y .

Simulation study III: Type-I error analysis
To assess the type-I error rates of the three methods, we assume
no association between the phenotype Y and the true gene
expression Eg;true. Therefore, Y was directly simulated from a
standard normal distribution N(0; I). For each gene in the desig-
nated tissue, we simulated Y and regressed it on the predicted
gene expression GR̂eX derived directly from GTEx. This process
was replicated 1,000 times for each gene, and a significance
threshold of 0.05 was used for the type-I error analysis. We
considered two different GTEx tissues as the causal tissue: the
brain (prefrontal cortex) and EBV-transformed lymphocytes.
We also evaluated TWAS power and type-I error using alterna-

tive simulation designs from Nagpal et al.,23 Feng et al.,22 and
Khunsriraksakul et al.21 These are designated as simulation
studies IV (power) and V (type-I error), with detailed information
provided in Note S4.

Model assessment in GTEx
The gene-expression imputation performances of UTMOST, JTI,
and TransferTWAS were compared based on their r2. The dataset
was randomly divided into five equal-sized groups, with 3=5 as
training set, 1=5 as validation set, and 1=5 as test set. A 5-fold
CV was conducted on the training set to select the best tuning
parameter that minimizes the prediction mean squared error on
the validation set. The models were then trained on the training
and validation sets using the selected tuning parameter, and pre-
diction performance was evaluated on the test set through the
Pearson correlation. The final correlation was calculated based
on the average of the five Pearson correlation estimates, with r2

set to 0 if the training model is null. This assessment procedure
follows Khunsriraksakul et al.21

TWAS with summary-level GWAS
When working with summary-level data in a GWAS, S-PrediX-
can24 is applied to calculate the TWAS statistic using the
following formula:

Zg =
∑M

m=1

β̂m

σ̂m

σ̂g

γ̂m

se(γ̂m)
; (Equation 9)

where β̂m is the prediction weight of gene g’s SNP m obtained in
the first step of TWAS, σ̂m is SNP m’s variance, σ̂g is an estimate of
gene g’s predicted expression’s variance, and γ̂m and se(γ̂m) are
the GWAS regression coefficient for SNP m and corresponding
standard error.

Results

Simulation studies
Simulation showed TransferTWAS achieved the highest
TWAS power, controlled type-I error, and improved
gene-expression imputation accuracy.
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Simulation study I examined TransferTWAS’s gene-
expression imputation performance under various sce-
narios. Figure 2 shows that across different (ρ;Ncorr) com-
binations, TransferTWAS consistently outperformed
UTMOST and JTI in terms of r2 if 5% of the SNPs were
causal. Notably, we considered some extreme cases—for
example, there is only one causal tissue and no correlated
tissue (Ncorr = 0). In this situation, TransferTWAS still
achieved higher imputation accuracy compared to the
other methods. This highlights the robustness of
TransferTWAS, as it effectively avoids negative transfer,
where a transfer learning method performs worse than a
target-only method.25 We also considered the scenario
where ρ = 0:8, indicating a non-zero correlation between
the correlated tissues. Under this scenario, TransferTWAS
still achieved improved performance.
TransferTWAS demonstrated robust performance across

varying causal proportions. When pcausal > 2%, it consis-
tently achieved higher imputation r2 on the test dataset
compared with UTMOST and JTI across all levels of expres-
sion heritability h2

e and number of causal genes P

(Figures 2 and S4–S6). At pcausal = 2%, TransferTWAS out-
performed both methods for h2

e = (0:05; 0:1; 0:15; 0:2),
while maintaining an advantage over JTI at h2

e = 0:25

despite UTMOST’s slightly better performance in this spe-
cific scenario (Figure S4). However, under a sparse model
with pcausal = 0:1%, UTMOST and JTI yield higher r2

in the test dataset compared with TransferTWAS
(Figure S5). These patterns suggest that TransferTWAS
achieves optimal performance when pcausal ≥ 2% and

h2
e ≤ 0:2, with performance comparable to that of
UTMOST at h2

e = 0:25. Since UTMOST does not incorpo-
rate tissue-similarity information, these results indicate
that leveraging external tissue data provides greatest
benefit when pcausal ≥ 2% and h2

e ≤ 0:2. The observed
performance differences reflect each method’s underlying
assumptions. TransferTWAS assumes a non-sparse archi-
tecture, while UTMOST and JTI assume a sparse one. We
will expand on these implications in the discussion.
Simulation studies II and IV indicated that

TransferTWAS exhibits significantly higher statistical po-
wer than othermethods across sample sizes from 5,000 to
500,000 (Figures 3, S1, and S2) when analyzing the brain
(prefrontal cortex) using ROS/MAP data. This advantage
remained consistent across varying levels of h2

e and P.
A similar trend was observed with EBV-transformed
lymphocytes, as shown in Figure S2. Additionally,
TransferTWAS maintained robust performance under
varying conditions, including the number of tissues
correlated with the causal tissue (Ncorr), expression heri-
tability (h2

e ), and correlation strength (ρ), as detailed in
Table S1.
In addition to its enhanced power, TransferTWAS

controlled type-I error rates in Simulation studies III and
V. Evaluations in the brain (prefrontal cortex) and EBV-
transformed lymphocytes revealed that TransferTWAS
maintains well-controlled type-I error rates, as shown in
Figures 4 and S3. While UTMOST and JTI exhibited
comparable type-I error rates in the brain (prefrontal cor-
tex), UTMOST showed inflation in EBV-transformed

Figure 2. Comparison of gene-expression imputation accuracy (r2) among TransferTWAS, UTMOST, and JTI in simulation
study I
The average Pearson correlations (r2) between observed and predicted gene expression in the test dataset by TransferTWAS, UTMOST,
and JTI, with various combinations of genetic correlation between causal and correlated tissues ρ = (0:3;0:8) and number of correlated
tissues Ncorr = (0;24;47). We assumed the proportion of causal SNPs is 5% in this simulation.
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lymphocytes. Further analysis (simulation study V) con-
firms that TransferTWAS’s type-I error remains well
controlled across varying levels of h2

e ;ρ;and Ncorr, as sum-
marized in Table S2.

Real application to GTEx
We first compared the transcriptome-wide 5-fold CV r2 of
TransferTWAS, UTMOST, and JTI in GTEx. Figures 5A and
S7 illustrate that TransferTWAS and UTMOST improve r2

over JTI on the test dataset, with TransferTWAS showing
increased imputation accuracy as GTEx tissue sample
sizes decrease. Notably, TransferTWAS achieved a mean
Δr2

TransferTWAS (r2 difference between TransferTWAS and
JTI) of 0.017, surpassing UTMOST’s mean Δr2

UTMOST (r
2 dif-

ference between UTMOST and JTI) of 0.006 (Table S3).
While TransferTWAS’s r2 was lower than JTI’s in four tis-
sues with large sample size, it showed improvement over
JTI in the remaining 44 GTEx tissues. The enhancement
over UTMOST can be attributed to the inclusion of
tissue similarity information, which UTMOST does not
consider. Additionally, TransferTWAS’s improvement
over JTI showed that its data-driven approach to aggre-
gating external tissue information appears to be more
effective in most GTEx tissues.
Second, we compared the number of imputable genes

(iGenes, defined as r2 > 0:01, as suggested by multiple

studies3,23,26). TransferTWAS showed an average of
10,744 iGenes, exceeding UTMOST’s 7,927 and JTI’s
6,668. TransferTWAS consistently outperformed JTI across
all GTEx tissues, while UTMOST failed to do so in larger-
sample-size tissues (Figure 5B and Table S3). Although
TransferTWAS may not exceed JTI in Δr2 for some larger
tissues, it effectively captured more iGenes, indicating
strong imputation capability.
Figure 5C and Table S3 analyze the proportion of iGenes

captured. TransferTWAS captured an average of 81.68% of
JTI’s iGenes compared to UTMOST’s 75.46%. Thus,
TransferTWAS not only identified a substantial number
of iGenes of JTI but also those previously unaccounted for.
Focusing on tissues with sample sizes smaller

than 300, TransferTWAS’s superiority became more
evident, achieving a mean Δr2

TransferTWAS = 0:028, versus
UTMOST’s 0.013 (Table S3). It identified an average of
11,390 iGenes, exceeding UTMOST’s 8,419 and JTI’s
6,361, and captured 89.42% of JTI’s iGenes compared to
UTMOST’s 87.50%. This confirms the effectiveness of
TransferTWAS’s transfer learning approach for tissues
with limited sample sizes.
In challenging contexts involving large sample sizes,

TransferTWAS consistently outperformed or matched
UTMOST and JTI. For muscle (skeletal) tissue (n =

706), TransferTWAS has Δr2
TransferTWAS = − 0:001 and

identifies 8,380 iGenes, outperforming UTMOST
(Δr2

UTMOST = − 0:005 with 6,077 iGenes) and JTI (6,454
iGenes). In the testis tissue, TransferTWAS demonstrated
an even more impressive Δr2

TransferTWAS = 0:004, surpass-
ing UTMOST’s Δr2

UTMOST = − 0:004. Additionally,
TransferTWAS identified a substantially larger number
of significant iGenes, totaling 11,908, compared to
UTMOST’s 8,932 and JTI’s 8,276. Overall, while
TransferTWAS may show a slight disadvantage in impu-
tation r2 for tissues with relatively large sample size, it
consistently allows for a greater number of genes to be
classified as imputable.
Additionally, we conducted a replication study using

weights trained on GTEx samples to predict expression
levels in 373 European individuals from the GEUVADIS
dataset. TransferTWAS achieved higher prediction r2 and
identified more iGenes compared to UTMOST and JTI
(Table S4).
Overall, TransferTWAS enhanced imputation accuracy

in GTEx tissues, which was consistent with our simulation
result.

Real application to quantile-transformed LDL-C
GWAS dataset
We applied the gene-expression imputation models from
GTEx data to identify potential risk genes of quantile-
transformed LDL-C (N = 343;621) using the UK Biobank
GWAS dataset. The SNP-SNP covariance matrices for
Equation 9 were estimated using the GTEx v.8 samples,
and identified associations are validated against existing
literature.
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h2=0.2, causal gene=40

Figure 3. Power comparison of UTMOST, JTI, and
TransferTWAS based on simulation study II using ROS/MAP
data
We simulated 40 causal genes (P = 40) explaining h2

p = 2% of
the total phenotypic variance. True gene-expression levels and
their effects on the trait were simulated, with each gene contrib-
uting h2

p=P variance. Predicted expression levels were generated
using the actual prediction performance (r2) from ROS/MAP for
each method. Power was calculated as the proportion of simula-
tions with Bonferroni-corrected significance pBonferroni < 0.05.
More scenarios were evaluated in Figure S1.
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As shown in Figure 6A, TransferTWAS identified the
largest number of significant associations (1,385) in liver
tissue, outperforming JTI (375) and UTMOST (483). The
significance threshold was set at a false discovery rate
(FDR)-corrected p value of less than 0.05 (pFDR < 0:05).
Among associations identified by JTI, 54.67% (205) were
also nominally significant (p < 0:05) under UTMOST,
while TransferTWAS increased this proportion to
67.73% (254).
We examined TransferTWAS’s ability to replicate well-

known LDL-C-associated genes. Among the 59 LDL-C-
related genes reported by Zhou et al.,11 TransferTWAS
identified 22, while UTMOST and JTI captured 11 (Figure
6B and Table S5). UTMOST, JTI, and TransferTWAS consis-
tently captured many well-known LDL-C-related genes.
For example, all three methods show similar strong associ-
ation signals for the potential LDL-C-related genes,
including PCSK9 (MIM: 607786), SORT1-PSRC1-CELSR2
cluster, KPNB1, and LIPC (Table S6). For other LDL-C
genes, TransferTWAS showed a boosted performance.
TransferTWAS uniquely identified ANGPTL3 (MIM:
603874) as imputable (r2 = 1.85%), leading to a significant
TWAS association (p = 0) and supporting findings that
inhibiting ANGPTL3 lowers LDL-C levels.27

We identified 898 additional associations through the
TransferTWAS method (Table S7). Based on the sugges-
tion of Zhou et al.,11 we defined the additional associa-
tion usings the following criteria: TransferTWAS pFDR <

0:05; UTMOST p > 0:05 or not imputable; and JTI p >

0:05 or not imputable. Among these, several associations
merit discussion. An improved signal was detected for
APOA1 (MIM: 107680) (TransferTWAS: r2 = 2:95%),
whereas the other two methods reported this gene as
not imputable. Such improvement on gene-expression

imputation may contribute to the significant associa-
tions from TransferTWAS (p = 5:79× 10− 7). Similarly,
TransferTWAS showed an improved imputation quality
in the APOB (MIM: 107730) gene (TransferTWAS: r2 =

17%; UTMOST: not imputable; JTI: not imputable), lead-
ing to a significant association (TransferTWAS: p = 0;
UTMOST: not imputable; JTI: not imputable). This
finding replicated the observations of Peloso et al.,28

who reports that mutations in APOB may be associated
with lower LDL-C. An enhanced imputation quality for
ABCA6 (MIM: 612504) was suggested by TransferTWAS
(r2 = 3:87%), and the corresponding TWAS p value is
5:10× 10− 4. This finding is in line with those of
Francis et al.,29 who associated a variant of this
gene with LDL-C. UTMOST and JTI failed to impute
this gene.

Enriched pathways in LDL-C
To assess the biological relevance between LDL-C and the
significant genes identifiedbyTransferTWAS,weperformed
functional enrichment analysis. As shown in Figure S8, the
most significant pathways are directly tied to lipid meta-
bolism and cardiovascular mechanisms. Specifically, the
top seven significant pathways are all closely related to
LDL-C, which include total cholesterol (p = 2:24×

10− 25), LDL-C (p = 6:23× 10− 21), triglycerides (p =

1:89× 10− 15), metabolite levels (p = 1:08× 10− 13), lipid
metabolism phenotypes (p = 1:93× 10− 12), cholesterol
metabolism (p = 1:82 × 10− 12), and high-density lipopro-
tein cholesterol (HDL-C) (p = 7:41 × 10− 11). Other path-
ways such as cholesterol metabolic process (p = 5:81×

10− 6) and cholesterol homeostasis (p = 1:46× 10− 6) are
also among the top 50 significant pathways, aligning with
LDL-C’s central role in lipid regulation. Additionally,

Figure 4. Comparison of type-I error rates for UTMOST, JTI, and TransferTWAS in simulation study III using ROS/MAP pre-
frontal cortex data
Quantile-quantile plot of TWAS p values from TransferTWAS, UTMOST, and JTI are generated to visualize the type-I error rates of these
models in brain (prefrontal cortex) compared to the expected values, with the blue dashed lines representing the 95% confidence in-
tervals of the expected − log(p) values.
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pathways linked to cardiovascular disease risk are also
strongly enriched, including coronary heart disease (p =

5:14× 10− 10), coronary artery disease (p = 3:08× 10− 7),
and cardiovascular disease risk factors (p = 1:72× 10− 7).
This is consistent with the clinical implications of elevated
LDL-C. Interestingly, the enrichment of MHC class II
antigen presentation and immune-related pathways (e.g.,
graft-versus-host disease) may reflect emerging links be-
tween lipidmetabolismand inflammation.The strong func-
tional overlap with established LDL-C-relevant pathways
and disease mechanisms further validates the ability of
TransferTWAS in capturing trait-relevant genes.

Real application to other complex traits
We tested the TWAS performance of UTMOST, JTI, and
TransferTWAS in 30 other complex traits, including
depressive symptoms, schizophrenia, and Alzheimer
disease (Ntotal≈2:5 million without adjusting for cross-
study sample overlap). These GWAS datasets were
previously employed in Hu et al..10 To identify the bio-
logically most related tissues for each analyzed trait, Hu
et al.10 employed linkage-disequilibrium-score regres-
sion30 and tissue-specific functional genome predicted
by GenoSkyline-Plus annotations.31 The results are listed
in their Supplementary Table 24, and we used them to
define the causal tissue of each trait.
TransferTWAS identified the greatest number of sig-

nificant associations within biologically relevant tissues
across 30 complex traits. As illustrated in Figure 6C,

TransferTWAS outperformed competing methods, de-
tecting substantially more associations in the most
biologically relevant tissue for each trait. Specifically,
TransferTWAS exhibited a 192.17% increase in
associations compared to UTMOST and a 213.14% in-
crease compared to JTI. Applying paired one-sided
Wilcoxon tests on the number of associations identified
by each method confirmed these improvements:
TransferTWAS significantly found more associations
compared with UTMOST (p = 2:64× 10− 2), and JTI
(p = 2:39× 10− 2). In contrast, while UTMOST identi-
fied 23.3% more associations than JTI, this difference
was not statistically significant (p = 0:2618). We list
the number of associations identified in each trait in
Table S8.

Discussion

The proposed TransferTWAS method aims to enhance
gene-expression imputation accuracy by leveraging tis-
sue-tissue similarity information. This approach borrows
information from tissues with substantial sample sizes to
improve predictions in tissues with limited samples. The
performance of TransferTWAS was evaluated through
extensive simulations and real data analysis using GTEx,
GEUVADIS, ROS/MAP, and multiple GWAS datasets. We
found that TransferTWAS can enhance the power of
TWAS, and no evidence of inflated type-I error was
observed. An enrichment analysis was conducted to
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Figure 5. Gene-expression imputation accuracy improvement over JTI in GTEx tissues
(A) The average r2 increment of UTMOST and TransferTWAS compared to JTI. The average r2 values are calculated over all expressed
genes in each tissue.
(B) The average iGene (r2 > 0:01) number increment of UTMOST and TransferTWAS compared with JTI.
(C) The proportion of JTI iGenes captured by UTMOST and TransferTWAS.
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clarify the biological relevance between LDL-C and the
iGenes identified by TransferTWAS.
Transfer learning has been applied in various areas of

statistical genetics, such as enhancing prediction accu-
racy by leveraging pretrained polygenic risk score
models.32,33 TransferTWAS demonstrated improved
TWAS power compared to other methods by leveraging
eQTL effect-size information from multiple external tis-
sues with similar genetic regulation profiles. The
method’s ability to effectively utilize external tissue in-
formation across various scenarios reinforces its poten-
tial as a powerful tool for enhancing TWAS imputation
performance.
In simulation I on the GTEx dataset, TransferTWAS

outperformed competing methods across various scenarios
in terms of imputation accuracy. Its shrinkage-based
approach, which avoids SNP selection during optimization,
alignswith its strength under an infinitesimalmodel (many
SNPs with weak effects), whereas regularization-based
methods like UTMOST excel under sparse architectures (a
few causal SNPs with strong effects). TransferTWAS outper-
formed UTMOST when more than 2% of SNPs were causal
(Figures 2 andS4–S6), highlighting the limitationsof regula-
rization-basedmethods (suchasUTMOSTand JTI) asdefault
choices. This is also supported by TIGAR (transcriptome-in-
tegrated genetic association resource),23,34 which shows
improved prediction accuracy over PrediXcan—a method
relying on an elastic net model.35

In simulation studies II–V, TransferTWAS was evaluated
for power and type-I error using ROS/MAP and
GEUVADIS panels. It demonstrated superior TWAS power
compared to UTMOST and JTI by leveraging eQTL effect-
size information from tissues with similar genetic regula-
tion profiles. While UTMOST lacks tissue similarity
modeling and JTI relies on functional annotation,
TransferTWAS’s data-driven approach proved more effec-
tive, achieving the highest TWAS power across scenarios,
even in tissue like EBV-transformed lymphocytes (Figure
S1) with highly specific gene expression.11 That is, its regu-
lation is less influenced by cross-tissue expression informa-
tion. Simulation studies III and V confirmed no inflated
type-I error, and pathway enrichment analysis of iGenes re-
vealed significant overlap with LDL-C-related pathways,
indicating minimal false positives.
While TransferTWAS achieved lower imputation r2

than JTI in four tissues (Figure 5A), it increased the num-
ber of iGenes across all tissues (Figure 5B). This enabled
more genes to enter the second step of TWAS, thereby
enhancing the likelihood of identifying significant associ-
ations. In LDL-C analysis, TransferTWAS identified 898 as-
sociations missed by other methods. Given its primary
goal of improving imputation in tissues with limited sam-
ple sizes, the lower r2 in specific tissues is less critical.
Several future directions for TransferTWAS warrant

consideration. First, the method does not currently
account for uncertainty in weight estimation during
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Figure 6. TWAS results of studying low-density lipoprotein cholesterol
(A) The number of genes that were significant under TransferTWAS, UTMOST, or JTI. Here, significance was defined as false discovery
rate (FDR)-corrected p value of less than 0.05 (pFDR < 0:05).
(B) The number of predefined known LDL-C-related genes detected by the three methods.
(C) The number of genes identified in the biologically relevant tissue for each of the 30 complex traits. Each box includes two hori-
zontal borders that represent the upper and lower quartiles and a solid line that represents the median. The highest and lowest points
indicate the maximum and minimum values.
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gene-expression prediction. Recent studies have success-
fully incorporated such uncertainty by identifying cis-
eQTLs, performing fine-mapping to pinpoint key variants,
and using the multivariate adaptive shrinkage (MASH)
method to jointly estimate eQTL effects across tissues
while incorporating tissue-specific uncertainty and corre-
lations.36–42 While TransferTWAS currently relies on stan-
dard ridge regression for tissue-specific effect estimation,
integrating MASH could be a promising extension,
although penalized regression methods (e.g., ridge,
LASSO, and elastic net) face challenges in providing
valid uncertainty due to biased estimates.43,44 Second,
TransferTWAS could be enhanced by incorporating
external eQTL summary-level data on tissue expression
similarity. For instance, Zhang et al.45 proposed a TWAS
method that leverages eQTL summary-level data to
improve gene-expression prediction accuracy. Since
TransferTWAS only requires tissue-specific point estimates
as input, it appears well suited for integrating such data.
Third, addressing potential false-positive inflation in
TWAS, as highlighted by recent studies,46,47 could further
improve TransferTWAS’s reliability and accuracy.
In summary, we introduced TransferTWAS, a transfer

learning algorithm that leverages GTEx data for gene-
expression imputation. By improving imputation accu-
racy and TWAS power, TransferTWAS has the potential
to advance our understanding of the genetic underpin-
nings of complex traits.

Data and code availability

• Project name: TransferTWAS
• Project homepage: https://github.com/daoyuan-lai/Transfer
TWAS

• License: MIT license
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